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Abstract 

BK channels are large conductance potassium channels activated by both Ca
2+

 concentration and 

membrane depolarization.  They recently have been implicated to be involved in sensorimotor 

gating and higher cognitive function.  However, it is not yet clear to what extent these channels 

affect these functions.  The purpose of this study is to assess the role of BK channels in 

sensorimotor gating and cognitive function. We used a C57BL6 and SV129 hybrid mouse model 

in which the pore forming alpha subunit was genetically deleted. We employed the acoustic 

startle response to assess mechanisms of sensory gating (habituation and PPI), and the Y-maze 

and Morris water maze to test higher cognitive function. We found that BK channel knock-out 

mice had impaired sensorimotor gating as well as deficits in spatial learning; however their 

working and spatial reference memory was intact.  Thus BK channels seemingly have a crucial 

role in basic and higher cognitive function.       
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BK channel, cognition, sensorimotor gating, habituation, prepulse inhibition, working memory, 
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1 Introduction 

Large conductance calcium-activated potassium channels (BK channels, also known as Maxi-K, 

BKCa, or Slo1 channels) are a specialized subfamily of K
+
 channels (Gribkoff et al., 2001; Lee 

and Cui, 2010), characterized by their high single-channel conductance (Salkoff et al. 2006), in 

addition to their unique dual requirement of being activated by both elevation of intracellular 

Ca
2+

 concentration and membrane depolarization (Cui et al. 2009; Kaczorowski et al., 1995). BK 

channels are expressed throughout most tissues of the body, and are abundantly expressed in the 

mammalian central nervous system, with high levels of expression in the brain compared to 

peripheral tissues (Salkoff et al., 2006; Gribkoff et al., 2001; Knaus et al., 1996). Within the 

brain, BK channels have been found to be strongly expressed in synaptic terminals in many types 

of neurons (Knaus et al., 1996; Salkoff et al., 2006; Hu et al., 2010; Wang et al., 2001). BK 

channels have been proposed to be physiologically important in the control of neuronal 

excitability as well as in the control of neurotransmitter release (Faber and Sah, 2003).  

Among the diverse physiological roles that BK channels have been implicated to be important 

players in, specific roles for BK channels have been indicated in the control of movement 

(Sausbier et al., 2004; Imlach et al., 2008), hearing (Ruttiger et al., 2004), sensory gating (Engel 

and Wu, 2008; C. Rankin, personal communication), and higher cognitive function (Zhang et al., 

2006; Laumonnier et al., 2006, Deng et al., 2013; Matthews and Disterhoft, 2009). In terms of 

higher cognitive function, BK channels have been found to be associated with several 

neurological disorders associated with cognitive disruptions, including schizophrenia (Zhang et 

al., 2006), autistic disorder and mental retardation (Laumonnier et al., 2006), and fragile X 

syndrome (FXS, Deng et al., 2013).  BK channels have also been suggested to play a role in the 

learning process, specifically in the acquisition of a trace eyeblink conditioning task (Matthews 

and Disterhoft, 2009).  To what extent the disruption of higher cognitive function is caused by 

sensory gating disruptions or is an independent pathology is not known. 
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The present study aimed to understand the role BK channels have in sensorimotor gating and 

cognition.  We used a genetic α subunit BK channel knock-out mouse model in order to assess 

the role of BK channels in sensorimotor gating and cognitive function.  We employed the 

acoustic startle response as a tool to assess mechanisms of sensory gating (habituation and PPI), 

and the Y-maze and Morris water maze to test higher cognitive function in the mice. We 

hypothesized that non-functional BK channels will lead to the observed deficits in measures of 

sensory gating, specifically in short-term habituation.  We also hypothesized that if loss of BK 

channel function results in impairment of sensorimotor gating, then this will also result in 

deficits in higher cognitive function.  
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2 Literature Review 

This study used a global BK channel knock-out mouse model for investigating BK channel 

function, and focuses on the physiological role that BK channels play in mechanisms of 

sensorimotor gating, and in higher cognitive function.   

2.1 BK channels: molecular structure, physiological role, and 

distribution 

Potassium channels encompass a large diverse group of integral membrane proteins (Atkinson et 

al., 1991).  Within the family of potassium (K
+
) ion channels, which generally function to control 

the electrical excitability of cells (Knaus et al., 1994) and to open and allow K
+
 to flow out of the 

cell and thus hyperpolarize the neuron (Gribkoff et al., 2001), there is a specialized subfamily of 

K
+
 channels referred to as BK channels (also known as Maxi-K, BKCa, or Slo1 channels, 

Gribkoff et al., 2001; Lee and Cui, 2010).  This class of ‘big potassium’ channels is characterized 

by their high single-channel conductance (Salkoff et al. 2006), in addition to their unique dual 

requirement of being  activated by both elevation of intracellular Ca
2+

 concentration and 

membrane depolarization (Cui et al. 2009; Kaczorowski et al., 1995).  

The pore forming alpha subunit of BK channels (tetramers) are encoded by a single gene termed 

Slo1 (Cui et al., 2009), a name derived from the slowpoke (slo) gene which was first identified 

and cloned in Drosophila melanogaster and shown to encode the structural component of Ca
2+

 - 

and voltage-activated K
+
 channel protein (Salkoff et al., 2006; Cui et al., 2009; Atkinson et al., 

1991). The mammalian mouse and human homologs encoding this gene were later isolated and 

cloned, and the human homolog is also called KCNMA1 (Pallanck and Ganetzky, 1994; Butler 

et al., 1993).  BK channels consist of two dissimilar types of subunits – the Alpha (α) subunit, 

encoded by the Slo1 gene, which forms the ion conduction pore, as well as the Beta (β) subunit, a 

protein contributing to channel gating properties and pharmacology (Lee and Cui, 2010; 

Kaczorowski et al., 1996). There are four types of β-subunits, encoded by the KCNMB1-4 genes, 



www.manaraa.com

4 

 

each displaying distinctive expression in tissue and altering Ca
2+

 sensitivity and gating kinetics, 

therefore contributing to BK channel diversity (Lee and Cui, 2010; Orio et al., 2002). β4 subunits 

are primarily expressed in the brain, whereas β1 subunits are primarily expressed in smooth 

muscle cells.  β2 and β3 subunits tend to be neuronally expressed (Lee and Cui, 2010). β-

subunits are also implicated in modification of the BK channel pharmacological properties, such 

as toxin binding and acting as drug receptors (Orio et al., 2002).  

Slo1 α-subunits have seven membrane-spanning domains, S0-S6, that surround an ion-selective 

pore.  They have a cytosolic carboxy-terminal extension and calcium bowl containing sites that 

sense cytosolic factors which can modify gating (Salkoff et al., 2006).  The Slo1 α-subunit 

comprises three main structural domains, each serving a distinctive function – a voltage sensing 

domain (VSD) which senses membrane potential, a cytosolic domain which senses calcium ions, 

and a pore-gate domain (PGD) which controls potassium permeation by opening and closing 

(Lee and Cui, 2010).  Collectively, the voltage sensing domain and the pore-gate domain are 

referred to as the membrane spanning domains, formed by S1-S4 and S5-S6, respectively (Meera 

et al., 1997; Lee and Cui, 2010).   Two RCK (regulator of K
+
 conductance) domains (RCK1 and 

RCK2) make up the cytosolic domain, which together contain two high-affinity calcium binding 

sites (one in the RCK1 domain, and one in the calcium bowl region which is located in the 

RCK2 domain, Lee and Cui, 2010). The S0 transmembrane segment which is unique to Slo1 

channels is important in the functional interaction between the α and β subunits, and is thought to 

play a role in modulation of the equilibrium between resting and active states of the voltage 

sensing domain (Koval et al., 2007, Figure 2.1) 

BK channels are expressed throughout most tissues of the body, and are abundantly expressed in 

the mammalian central nervous system, as well as in many other organs including the pancreas, 

hair cells, and smooth muscle (Salkoff et al., 2006). However, BK channel mRNA has been 

found to have prevalent levels of expression in the brain compared to peripheral tissues, and is 

highly expressed in the neocortex, olfactory cortex, hippocampus, and cerebellum of the adult 

mammalian rat brain (Gribkoff et al., 2001; Knaus et al., 1996).  BK channel mRNA has also 

been observed to be enriched in termination areas of major projection tracts, suggesting that the 

BK channel protein is found most abundantly in synaptic terminals (Knaus et al., 1996; Salkoff 
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et al., 2006).  Further research to localize BK channels on a cellular level revealed that BK 

channels are located in the presynaptic terminal in many types of neurons (Hu et al., 2010; Wang 

et al., 2001). Investigations of BK channel expression in the mouse brain revealed high levels in 

the neocortex, olfactory bulb, basal ganglia, hippocampus, and cerebellum (Sausbier et al., 

2006).  

BK channels have been implicated to be physiologically important in the control of neuronal 

excitability as well as in the control of neurotransmitter release (Faber and Sah, 2003).  They 

have been proposed to contribute to the fast phase of the afterhyperpolarization (AHP) potential 

after an action potential, thereby also contributing to the refractory period, excitability and firing 

rate of a neuron (Salkoff et al., 2006; Faber and Sah, 2003). BK channels have also been 

suggested to play an important role in controlling neurotransmitter release by primarily serving 

as negative regulators of neurotransmitter secretion (Wang, 2008; Wang et al., 2001).  It has 

been suggested that BK channels may function as an emergency brake under conditions of 

excessive depolarization and amassing of intracellular calcium by reducing calcium influx and 

therefore neurotransmitter release upon their activation (Hu et al., 2001; Sailer et al., 2006).  

They may as well function as modulators of synaptic efficacy resulting for e.g. in synaptic 

depression, which normally involves a reduction in the amount of neurotransmitter released 

(Robitaille and Charlton, 1992; Zucker 1989).   
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Figure 2.1 BK channel Slo1 subunit structure. The Slo1 subunit is comprised of a membrane 

spanning domain and a cytosolic domain. The membrane spanning domain includes the S0 

segment, the voltage sensing domain (VSD, S1-S4) and the pore-gate domain (PGD, S5-S6).  

The cytosolic domain is formed by two RCK domains (modified after Lee and Cui, 2010). 

 

2.2 BK channels and their involvement in hearing and motor 

function 

Among the diverse physiological roles that large conductance calcium-activated potassium (BK) 

channels have been implicated to be important players in, specific roles for BK channels have 

been indicated in the control of movement (Sausbier et al., 2004; Imlach et al., 2008), as well as 

in hearing (Ruttiger et al., 2004).  

Evidence for the involvement of BK channels in motor function has been shown in studies with 

Caenorhabditis elegans.  BK channels are present in both neurons and muscles of C. elegans.  

Through the genetic removal of the BK channels, a functional role of this channel was identified 

in the presynaptic regulation of neurotransmitter release from motor neurons at the 

neuromuscular junction when Slo1 mutants were associated with increased quantal content of 

neurotransmitter secretion (Wang et al., 2001). A critical role for BK channels in muscle tissue 

was established in C. elegans in relation to the dystrophin homologue dys-1, mutations of which 
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lead to Duchenne muscular dystrophy (DMD), a progressive muscle wasting disease in humans 

(Carre-Pierrat et al., 2006). The absence of dys-1 down-regulates the activity of the BK channel, 

putting the muscle in a deleterious hyperactive state, which may contribute to the pathogenicity 

of dys-1 mutations (Carre-Pierrat et al., 2006).   

Moreover, inhibition of BK channels has been proposed as a mechanism underlying “ryegrass 

staggers”, a neurological disease of livestock that impairs motor function involving ataxia and 

tremors, based on results showing that intraperitoneal BK channel inhibitor (paxilline) 

administration in wild-type mice induced motor impairment in the form of tremors and limb 

incoordination but had no effect in mice lacking BK channels (Imlach et al., 2008). Furthermore, 

motor impairment has been observed in mice deficient for the pore forming subunit of the BK 

channel in the form of tremor as well as abnormal interlimb coordination (e.g., in gait).  These 

effects were suggested to be due to cerebellar dysfunction through fast afterhyperpolarization 

(AHP) suppression and slowed action potential repolarization in purkinje cells, as shown in 

recordings of PCs in cerebellar slices of wild-type animals treated with the BK channel blocker 

iberiotoxin (Sausbier et al., 2004).  In the present study, we used a different BK channel knock-

out mouse for behavioural testing, so we carefully re-assessed motor function of our BK channel 

knock-out mouse before we analyzed cognitive tests that rely on motor function.  

Another physiological role that BK channels have been suggested to be involved in is hearing.  

Auditory hair cells are sensory receptors performing three main functions:  transduction of a 

stimulus into an electrical signal, filtering of the stimulus or response to augment behaviourally 

salient frequencies, and synaptic transmission of information to the central nervous system 

(Roberts et al., 1990).  BK channels have been found to contribute to the electrical tuning of 

auditory hair cells in conjunction with calcium channels whereby they maximize the 

responsiveness of the cells to particular sound stimulation frequencies (Jones et al., 1999; 

Roberts et al., 1990). Differential expression of alternatively spliced α subunit combined with a β 

subunit gradient has been suggested to possibly underlie the tonotopic organization of the turtle 

cochlea (Jones et al., 1999). Moreover, BK channels in inner hair cells of the cochlea have been 

implicated to be crucial in central auditory processing by coding the temporal structure of sound, 

as well as in signal detection in a noisy environment, as was shown in mice with hair-cell 
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specific deletion of the pore forming α subunit (Kurt et al., 2012). Additionally, an experiment 

using knock-out mice lacking the pore forming α subunit of the BK channel has shown a critical 

role of this subunit to the development of normal hearing function and cochlear phenotype, due 

to observed progressive high-frequency hearing loss in these mice beginning four weeks 

postnatally (Ruttiger et al., 2004).  

Unperturbed hearing function is essential for our experiments using modulations of the acoustic 

startle response.  In contrast to the previously published studies, we used an F1 generation hybrid 

mouse, generated by mating heterozygous C57BL6 and SV129 mice.  Auditory brainstem 

responses (ABRs) were recorded from these animals and click-evoked ABRs revealed hearing 

thresholds that were not significantly different between control and knock-out mice, as was true 

for tone-evoked ABR thresholds for low and middle frequency ranges of hearing. High 

frequency (32 kHz and above) hearing loss was detected in knock-out mice, however, these 

frequencies don’t play any role in our startle testing and no progressive age related hearing 

deficits were found in knock-out mice from 4-15 weeks of age (Unpublished data, personal 

communication Lukas Ruttiger, Figure 2.2).  
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Figure 2.2 Auditory brainstem responses recorded from F1 generation α subunit homozygous 

knock-out and wild-type littermate control mice. Click-evoked ABRs revealed hearing 

thresholds that were not significantly different between control and knock-out mice.  Tone-

evoked ABR thresholds for low and middle frequency ranges of hearing were not significantly 

different between control and knock-out mice. High frequency (32 kHz and above) hearing loss 

was detected in knock-out mice (Unpublished data, personal communication Lukas Ruettiger). 
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2.3 The acoustic startle response 

We used measurements of the acoustic startle response to assess sensorimotor gating in wild-

type and BK channel knock-out animals.  The startle reflex is a fast reaction to sudden and 

intense stimuli generally characterized by a fast twitch of facial and body muscles, and can be 

described as a response pattern serving a protective function against injury. It can be elicited by a 

variety of stimuli and stimulus combinations, including acoustic, tactile, visual, and vestibular, in 

various species of animals as well as in humans (for review see Koch 1999).  The startle 

response can exist in many different forms across species; for instance, the nematode 

Caenorhabditis elegans swims backwards in response to a mechanical stimulus in the form of a 

tap to the side of the Petri dish where it resides, which is termed as the tap withdrawal response. 

The distance travelled backwards in response to each stimulus is a measure of the magnitude of 

this response (Rankin et al. 1990). Drosophila exhibit a giant fibre escape pathway in response to 

a visual stimulus, the intensity of which can be measured by recording from the target muscle 

fibre (Engel and Wu, 1996). Similarly, the mollusc Aplysia displays a gill-withdrawal reflex in 

response to a tactile stimulus presented to the skin, and this response can be quantified with 

recordings of postsynaptic potentials (EPSPs) in the gill motor neurons (Castellucci et al., 1970).  

The mammalian acoustic startle response (ASR) is the most commonly studied startle reflex, 

characterized by eye-lid closure as well as facial, neck, and skeletal muscle contraction 

producing a crouch-like movement (Koch 1999; Fleshler 1965), and was first evoked and 

described in rats by Prosser and Hunter (1936). These experiments consisted of concentric needle 

electrodes being inserted into the leg muscles (predominantly the gastrocnemius) of rats which 

recorded the electrical response of the muscle fibres in response to a sudden and loud click 

acoustic stimulus that was presented repeatedly to the animals, resulting in contraction of the 

muscle.  The whole body startle response is used frequently in small animals to assess the 

magnitude of the response to acoustic stimuli, whereas in humans, the acoustic startle response is 

most commonly measured by observing the eye blink reflex component of this response, as 

blinking is considered to be the most reliable constituent of startle (Geyer and Braff, 1982; 

Graham, 1975; Landis and Hunt, 1939).  The universality of this relatively simple motor 
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response pattern has been observed across a wide variety of species of animals as well as in 

humans (Landis and Hunt, 1939; Fleshler, 1965), allowing studies with animals to be 

generalizable to humans and aid in our further understanding of human sensorimotor integration 

(Koch, 1999).   

The neural circuitry underlying the acoustic startle response pathway was first studied in rats by 

Davis et al., (1982a) through a series of experiments involving tracing, electrical stimulation, and 

electrolytic lesions.  The short latency of the acoustic startle reflex suggested that this response is 

mediated by a simple neural circuit involving few synapses (Davis et al., 1982a), and in 

accordance with this idea, the results of these experiments yielded that the acoustic startle 

pathway consists of the auditory nerve, ventral cochlear nucleus (VCN), ventral nucleus of the 

lateral lemniscus (VLL), caudal pontine reticular nucleus (PnC), and ends with spinal 

interneurons and spinal motor neurons (Koch, 1999; Davis et al., 1982a). The critical 

involvement of the PnC in mediating the ASR was further supported when a subpopulation of 

cells within the PnC, termed giant neurons, were found to respond to short-latency auditory input 

and project to the spinal cord, making these cells good candidates for mediating the ASR (Koch 

et al., 1992; Lingenhohl and Friauf, 1994).  Furthermore, lesion studies in rats revealed a close 

correlation between the reduction in the amplitude of the startle response and the loss of PnC 

giant neurons, as well as a marked reduction or even abolition of the ASR observed after large 

lesions of the PnC (Koch et al., 1992).  The primary acoustic startle circuit originally proposed 

by Davis et al. (1982a) was later re-evaluated using discrete cell-specific chemical lesions; the 

results of this study revealed that lesioning of the VLL did not eliminate startle, but when the 

lesion invaded a portion of the ventrolateral part of the PnC, startle was significantly reduced, 

suggesting that only the PnC and not the VLL is critical in the mediation of the reflex (Lee et al., 

1996). Specific lesions of the ventrolateral part of the PnC were found to completely block 

startle, further supporting the importance of this structure in ASR mediation.  Additionally, 

cochlear root neurons (CRNs - neurons embedded in the auditory nerve) receive direct auditory 

input from the cochlea and project axon collaterals that synapse mainly in the ventrolateral part 

of the PnC. This is suggestive of their potential involvement in the acoustic startle reflex, most 

likely by providing the auditory input to the PnC that is required to elicit a startle response 
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(Lingenhohl and Friauf, 1994).  Lee et al. (1996) confirmed the involvement of CRNs in the 

ASR by lesioning these neurons, which resulted in a complete abolishment of the startle reflex. 

A role for the cochlear nucleus (CN) in startle response mediation remains unclear, although it 

does project auditory input to the PnC (Lee et al., 1996; Weber et al., 2002). Taken together, 

these results show that the neural circuitry underlying the ASR is simpler and may involve less 

synapses than previously thought, which include the spiral ganglion cells that innervate the 

cochlear hair cells, CRNs, the ventrolateral part of the PnC, and spinal motor neurons (Lee et al., 

1996, Figure 2.3). Additionally, PnC giant neurons can be considered as the sensorimotor 

interface of the startle reflex, since these neurons receive sensory information from other 

modalities as well and project directly onto facial, cranial, and spinal motor neurons (Lingenhohl 

and Friauf, 1994; Koch, 1999).  

 

 

 

 

Figure 2.3 Hypothetical primary pathway of the acoustic startle reflex.  The neural circuitry 

underlying the ASR includes the spiral ganglion cells that innervate the cochlear hair cells, 

CRNs, the ventrolateral part of the PnC, and spinal motor neurons (modified after Koch, 1999). 
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2.4 Operational measures of sensorimotor gating: habituation 

and prepulse inhibition 

The acoustic startle response can be modulated by a variety of factors such as repetitive 

presentation of a startling stimulus (sensitization/habituation), as well as by prior presentation of 

a non-startling prepulse stimulus (prepulse inhibition), and thereby shows a number of forms of 

plasticity that reflect sensorimotor gating mechanisms.  Therefore the ASR serves as a valuable 

response model in furthering our understanding of the mechanisms underlying sensorimotor 

gating and how they alter other behaviour (Koch, 1999; Lingenhohl and Friauf, 1994). 

 Sensory gating is a pre-attentive process that allows us to filter out extraneous irrelevant stimuli 

and extract only the salient information important for survival, allowing us to respond 

appropriately through efficient information processing. Once the distinction between 

unimportant and relevant stimuli has been made, cognitive resources can then be allotted to 

process the salient stimuli (Graham, 1975; Braff and Light, 2004).  Two operational measures 

which reflect sensorimotor gating mechanisms are habituation and prepulse inhibition (PPI) of 

startle, discussed below. 

Habituation is defined as the reversible decrease in a behavioural response resulting from 

repeated presentation of a stimulus (Thompson and Spencer, 1966).  It is considered to be the 

most basic form of non-associative learning, since only a single stimulus is thought to be 

involved rather than an association between multiple stimuli, and it does not involve sensory or 

motor fatigue (Rankin et al., 2009; Rose and Rankin, 2001). The characteristics of habituation 

(for review see Thompson and Spencer, 1966; Rankin et al., 2009) have been found to be 

universally present across a wide variety of behavioural responses differing in degrees of 

complexity, with one of the simpler and most commonly used responses to study habituation 

being that of the startle reflex (Thompson and Spencer, 1966; Leaton et al., 1985). Habituation is 

independent of a simultaneous parallel process termed sensitization, which is characterized by an 

increase in behavioural responsiveness to a repeated stimulus, and together these processes yield 

the net behavioural outcome in response to the repeated presentation of a stimulus (Groves and 
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Thompson, 1970).  Additionally, habituation exists in two forms: short-term, which is the 

decrement in a behavioural response observed within a testing session, and long-term, the 

reduction of a behavioural response observed across days (Leaton et al., 1985). Habituation is a 

phenomenon and form of learning that allows organisms to focus on important stimuli by 

filtering out irrelevant stimuli, and is considered to be a prerequisite to understanding other more 

complex forms of learning (Rankin et al., 2009).  

Prepulse inhibition (PPI) is defined as the reduction in the magnitude of a startle response 

evoked by a startling stimulus when this stimulus is preceded by a non-startling stimulus (Ison 

and Hammond, 1971). This phenomenon reflects another aspect of pre-attentive information 

processing and a mechanism of sensorimotor gating, allowing an organism to attend to salient 

stimuli and ignore those that are irrelevant, thereby reducing information overload and demand 

for cognitive resources and allowing an organism to function efficiently (Fendt et al., 2001; 

Ellenbroek 2004; Braff and Light, 2004). Prepulse inhibition does not require learning, as it 

occurs on the first prepulse-pulse trial, and repeated exposure to a prepulse stimulus does not 

impede the ability of subsequent presentations of the prepulse to reduce the magnitude of the 

startle response (Fendt et al., 2001; Koch, 1999). The amount of prepulse inhibition observed is 

dependent on the intensity and modality of the prepulse stimulus, as well as the time interval 

between presentation of the prepulse and startle stimulus (interstimulus interval, ISI, Fendt et al., 

2001; Ison and Hammond, 1971).  ISIs for maximum prepulse inhibition have been found to be 

120 msec in humans (Braff 1978; Koch, 1999) but shorter in rats and mice (30-50 msec), likely 

due to their smaller brain size. Maximum ISIs where prepulse inhibition can be observed are 

between 1000 and 2000 msec (Yeomans et al., 2010).   

Deficits in sensory gating result in information overload received by the brain and this is present 

in many neurological disorders such as Huntington’s disease (Swerdlow et al., 1995), Tourette’s 

syndrome (TS), attention-deficit hyperactivity disorder (Castellanos et al., 1996), fragile X 

syndrome (FXS) (Frankland et al., 2004), autistic disorder (AD) (Perry et al., 2007), and most 

notably in schizophrenia (Geyer and Braff, 1982, Braff et al., 1978).  Abnormalities in 

sensorimotor gating have been observed in schizophrenic patients in studies showing impaired 

habituation of the eye blink reflex as well as impaired prepulse inhibition of this response (Geyer 
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and Braff, 1982; Braff et al., 1978; Graham, 1975), which is in line with schizophrenic patients 

having reported to experience oversensitivity to sensory stimulation. (Braff and Geyer, 1990) 

Such deficits in sensorimotor gating result in sensory information overload, and may lead to 

cognitive disintegration in the form of attention-dependent cognitive deficits (Braff and Light, 

2004), as well as perceptual and reasoning thought disturbances (Perry et al., 1999), suggesting 

an association between deficits in sensorimotor gating with other cognitive deficits. 

In summary, habituation and prepulse inhibition represent sensory gating mechanisms that 

exemplify an organism’s ability to filter incoming sensory information. Understanding the role 

of BK channels in the basic mechanisms underlying habituation and PPI allows us to heighten 

our understanding of sensorimotor gating mechanisms, as well as how disturbance of these 

mechanisms leads to impairment of sensorimotor gating and associated cognitive deficits 

potentially caused by deficits in sensorimotor gating. 

 

2.5 Circuitry mediating habituation and prepulse inhibition of the 

ASR 

Short-and long-term habituation of the ASR are independent processes that require different 

underlying neuronal mechanisms; short-term habituation is hypothesized to be inherent to the 

acoustic startle response pathway, whereas long-term habituation is thought to be mediated 

extrinsically (Leaton et al., 1985).  A study involving decerebrated rats revealed that these 

animals displayed robust short-term habituation but no long-term habituation of the ASR, 

supporting the notion that short-term habituation, but not long-term habituation of the acoustic 

startle response is mediated in the lower brainstem (Leaton et al., 1985).  Short-term habituation 

of the ASR is presumed to be mediated intrinsically by the acoustic startle response pathway 

itself, as Davis et al. discovered (1982b) by electrically stimulating rats at various points of the 

neural circuit underlying this response.  The results showed that elicited startle responses 

decreased across repetitive stimulation of the cochlear nucleus, but not with repetitive 
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stimulation of  the caudal pontine reticular nucleus (PnC), indicating that habituation seems to 

occur in the earlier sensory parts of the acoustic startle pathway and specifically at the synapse 

between the cochlear nucleus and the PnC (Davis et al., 1982b).  Furthermore, electrical 

stimulation of the PnC produced startle responses that did not habituate to repeated stimulus 

presentation (Lingenhohl and Friauf, 1994). Intracellular recordings of PnC giant neurons, 

thought to represent the sensorimotor interface of the acoustic startle reflex, have revealed 

decreased postsynaptic potentials during repeated acoustic stimulation (Lingenhohl and Friauf, 

1994). Moreover, repetitive electrical stimulation of auditory afferents was observed to induce 

synaptic depression in the synapse with PnC giant neurons, providing further evidence for the 

site of short-term habituation to be along the sensory pathways to the PnC (Weber et al., 2002; 

Pilz et al., 2004), and this mechanism responsible for the synaptic depression thought to underlie 

short-term habitation has been suggested to be localized presynaptically (Simons-Weidenmaier 

et al., 2006).  To summarize, although little is still known about the molecular and cellular 

mechanisms underlying its behavioural expression (Rose and Rankin, 2001), short-term 

habituation appears to be due to depression of synaptic input from sensory afferents to giant 

neurons in the PnC through a presynaptically located mechanism. 

On the other hand, long-term habituation has been proposed to be mediated extrinsically of the 

acoustic startle response pathway. Decerebrated rats with intact lower brain stems and therefore 

intact primary acoustic startle response neural pathways showed abolished long-term habituation 

yet robust short-term habituation, providing evidence for long-term habituation not being 

mediated solely within this pathway (Leaton et al., 1985).  The neuronal substrates that have 

been implicated to be involved in the mediation of long-term habituation of the acoustic startle 

response include the mesencephalic reticular formation, the medial cerebellum, the ventral 

periaqueductal gray, as well as various cortical areas. It is not yet clear which site in the acoustic 

startle response pathway is relevant to mediation of long-term habituation (Koch, 1999).  

The neuronal circuitry underlying the mediation of prepulse inhibition is also thought to be 

extrinsic to the acoustic startle pathway, although is not yet fully understood.  The acoustic PPI 

pathway, consisting of midbrain structures, runs parallel to and modulates the primary acoustic 

startle pathway by providing feed-forward inhibition onto the giant neurons in the PnC through 
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inhibitory projections from the pedunculopontine tegmental nucleus (PPTg), presumably through 

both cholinergic and GABAergic inhibition (Koch, 1999; Yeomans et al., 2010).  Acoustic 

prepulse stimuli are projected from the cochlear nucleus and are received as auditory input by the 

inferior colliculus (IC), a critical component of the acoustic PPI pathway, and from there this 

sensory information is relayed to the superior colliculus (SC). The SC not only receives auditory 

input, but also visual and somatosensory input, and projects to the PPTg, therefore acting as a 

structure capable of relaying multi-modal prepulse stimuli to the PPTg (Fendt et al., 2001). As 

mentioned previously, the PPTg then projects to and inhibits PnC giant neurons (Figure 2.4).  A 

critical role for the PPTg was established through electrical stimulation studies of this area, 

which led to an observed reduction in startle response and therefore enhancement of prepulse 

inhibition (Saitoh et al., 1987).  Additionally, lesioning of the PPTg as conducted by Leitner et 

al. (1981) resulted in attenuated prepulse inhibition, further supporting a role for this structure in 

the mediation of prepulse inhibition. However, lesioning of the PPTg has not completely 

abolished prepulse inhibition, suggesting that there may be other pathways involved in 

modulating the primary acoustic startle pathway.  It should also be mentioned that the PPTg 

itself is modulated by several other brain regions, thus contributing another layer of complexity 

to the neuronal circuitry underlying prepulse inhibition mediation (Koch, 1999).  
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Figure 2.4 Hypothetical primary pathway of the acoustic startle reflex and extrinsic prepulse 

inhibition circuitry. Short-term habituation is thought to occur between the cochlear root/nucleus 

sensory neurons and PnC giant neurons. Prepulse inhibition is thought to be mediated 

extrinsically of this primary startle pathway by sending inhibitory projections to the PnC.  

(modified after Koch, 1999). 

 

2.6 Evidence for the importance of BK channels in sensorimotor 

gating  

A requirement for the biological analysis of learning is that the neural circuitry of the behaviour 

undergoing modification by the learning process be correctly specified in order to associate 

cellular function with learning and memory (Bailey and Chen, 1988). Habituation in different 

animals and across various response modalities likely cannot be explained by a common single 

neuronal mechanism, however certain types of habituation that share common parameters may 

potentially also share a specific set of mechanisms underlying these processes (Castelluci and 

Kandel, 1974). Although little is still known about the molecular and cellular mechanisms 

underlying the behavioural expression of habituation (Rose and Rankin, 2001), forms of 

habituation with common parametric characteristics have been established for a variety of 

behavioural and reflex responses in animals with well-differentiated central nervous systems 

(Thompson and Spencer, 1966), and similarity across species suggests a common neuronal 

mechanism mediating short-term habituation of startle (Pinsker et al., 1970).   
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Assessment of the gill-withdrawal reflex evoked by a tactile stimulus presented to the same spot 

on the skin in the mollusc Aplysia by Pinsker et al. (1970) revealed habituation of the gill 

responses to an average of 25 percent of control amplitudes with repetition of the stimulus (a jet 

of seawater).  The neuronal mechanisms of habituation of the gill-withdrawal reflex were 

investigated using a simplified neural circuit of the reflex in the form of an isolated ganglion 

joined to a piece of skin from the tactile receptive field. A weak electrical stimulus was applied 

to the skin which produced excitatory postsynaptic potentials (EPSPs) in the gill motor neurons, 

and this response was observed to decrease with repeated stimulation (Castellucci et al., 1970). 

This data suggests that short-term habituation of the gill-withdrawal reflex involves plastic 

changes in the form of a decrease in excitatory synaptic transmission (homosynaptic depression) 

between the sensory and motor neuron (Castellucci et al., 1970; Castellucci and Kandel, 1974). 

Further analysis of the synaptic depression underlying short-term habituation of the gill-

withdrawal reflex in Aplysia was done to assess the amount of neurotransmitter release at the 

presynaptic terminal of the sensory neuron, revealing that an important change associated with 

the habituation of the gill-withdrawal reflex is that of a decrease in the number of 

neurotransmitter quanta (multimolecular packets) released, suggesting a presynaptic mechanism 

may participate in short-term habituation (Castellucci and Kandel, 1974).  

BK channels, which are suggested to have important roles in controlling neurotransmitter release 

(Wang, 2008), were first proposed to play a role in habituation in an experiment by Engel and 

Wu (1998), who attempted to link behavioural changes to cellular or molecular defects by 

altering the slowpoke (Slo) gene encoding the α pore forming subunit of the BK channel in 

Drosophila and observing the functional role that this null mutation had in terms of habituation.  

To examine habituation behaviour, long-latency giant fibre responses were analyzed in response 

to electrical stimulation.  Pulses from electrodes in the eyes were used to trigger the cervical 

giant fibre, and responses were recorded from their target muscle fibre (dorsal longitudinal 

muscle). The results revealed Slo mutants to have a markedly reduced rate of habituation 

compared to controls.  These results suggest that Slo-type Ca
2+ 

-activated K
+
 channels have 

distinct functional consequences on short-term habituation, linking this behavioural phenotype to 

specific K
+
 channel physiology.  
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Similar results were found in an experiment using the nematode Caenorhabditis elegans.  This 

organism swims backwards in response to a mechanical stimulus in the form of a “tap to the side 

of the Petri dish” where it resides, termed as the tap withdrawal response, and the distance 

travelled backwards in response to each stimulus is measured and used to quantify habituation 

(Rankin et al. 1990). A Slo1 channel mutant was used in this study in which the α pore forming 

subunit of the BK channel was abolished, and these worms were tested for habituation alongside 

controls.  Results were then compared to wild type worms, which showed that while wild type 

worms habituated to the mechanical stimulus, the Slo1 channel mutants did not display 

habituation.  These results imply that BK channels are involved in sensory gating in the form of 

short-term habituation (Unpublished data, personal communication Catharine Rankin).   

In summary, short-term habituation appears to be mediated through a presynaptic mechanism 

involving synaptic depression and reduced neurotransmitter release.  Specifically, BK channels 

have been suggested to play an important role in short-term habituation in studies with 

Drosophila and C. elegans, implying that this behavioural phenotype may be explained on a 

cellular and molecular level through potassium
 
channel physiology.  

 

2.7 BK channels and their implication in higher cognitive function  

A relatively under-researched area of knowledge in neuroscience is that of BK channel 

physiology influencing higher cognitive function. To date, BK channels have been found to be 

associated with a few neurological disorders that are associated with cognitive impairments, 

including schizophrenia, autistic disorder, and fragile X syndrome (FXS).  BK channels were 

also directly implicated in the acquisition and learning of a task, discussed below. 

The BK channel has been hypothesized to play a role in the schizophrenia, largely based on the 

known function of these channels in neuronal excitability and neurotransmitter release, in 

combination with the fact that commonly used neuroleptics work by altering calcium-activated 

potassium conductance among central neurons (Zhang et al., 2006; Salkoff et al., 2006; Faber 
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and Sah, 2003). A study conducted on schizophrenic patients investigated the effects of 

diazoxide, a potassium channel opener, and found that this could be an effective adjuvant agent 

in the treatment of this disorder (Akhondzadeh et al., 2002). Additionally, a post-mortem 

analysis of brains from schizophrenic patients revealed lower BK channel mRNA levels in the 

prefrontal cortex, suggesting a possible role for BK channels in schizophrenia (Zhang et al., 

2006).   

Laumonnier et al. (2006) found a possible association between autistic disorder and the BK 

channel upon discovering that the KCNMA1 gene, which codes for the pore forming α subunit 

of the BK channel (see above), is expressed at a lower level in comparison to healthy control 

subjects, suggesting a haploinsufficiency of this gene associated with autism.  Therefore these 

authors provided evidence for autism and mental retardation being linked to a channelopathy 

involving a defect of the BK channel, and proposed that this may be due to deficiencies in 

neuronal excitability and synaptic transmission, both of which are functions that the BK channel 

has been implicated to be involved in (Laumonnier et al., 2006; Salkoff et al., 2006; Faber and 

Sah, 2003).  

BK channels have also recently been found to be involved in the molecular basis of fragile X 

syndrome (FXS), a mental disorder which develops with loss of the fragile X mental retardation 

protein (FMRP, Deng et al., 2013).  Deng et al. (2013) found that FMRP is involved in the 

regulation of action potentials in cortical and hippocampal pyramidal neurons, concluded after 

recordings from knock-out mice lacking this protein revealed increased action potential duration 

compared to wild-type control mice.  Further experimentation involving reintroduction of FMRP 

to the neurons on the presynaptic side of the synapse resulted in restoration of normal action 

potentials, and also led to the discovery that FMRP acts presynaptically to regulate action 

potential duration.  Moreover, this regulation by FMRP was found to be mediated specifically by 

BK channels, to which FMRP binds and regulates their level of sensitivity to calcium, thereby 

affecting synaptic function and consequently action potential duration.   

Aside from being involved in several neurological disorders, BK channels have also been 

suggested to play a role in learning. Matthews and Disterhoft (2009) conducted a study on rats 
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whereby animals received bilateral infusions of paxilline, a BK channel blocker, into the CA1 

region of the hippocampus, and were then trained to perform a trace eyeblink conditioning 

learning task.  Results showed that blocking of BK channels slowed learning in these animals, as 

they showed slower acquisition of the task compared to control animals; however, hippocampal-

dependent learning was not abolished as these animals were able to learn the task eventually.  

Similar results have also been found by Sausbier et al. (2004) in knock-out mice deficient for the 

pore forming α subunit of the BK channel. However, these mice reportedly showed no learning 

of the task at all compared to wild-type control mice, that were able to learn the task rapidly, 

which the authors suggested could be attributed in part to cerebellar/auditory dysfunction.  

3 Objectives and hypotheses  

The main objectives of the present study are to establish a role for BK channels in sensorimotor 

gating, as well as aim to determine an association between BK channels and higher cognitive 

function. We hypothesized that non-functional BK channels will lead to deficits in measures of 

sensory gating, specifically in short-term habituation.  We also hypothesized that if loss of BK 

channel function results in impairment of sensorimotor gating, then this will also result in 

deficits in higher cognitive function.  
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4 Materials and methods 

Fifty-six C57BL6/SV129 (F1 generation) male (n=31) and female (n=25) mice were used for 

this study; 20 homozygous (-/-) Slo1 knockout (10 male, 10 female), 17 heterozygous (-/+) Slo1 

knockout (10 male, 7 female), and 19 wild-type littermates (11 male, 8 female). These animals 

were generated and genotyped in the Pharmaceutical Institute of the University of Tübingen, 

Germany, and shipped to Western University at the age of 2-3 months.   Mice were housed in a 

12 hour light/dark cycle in groups of 2, 3, or 4 animals with mixed genetic background per cage.  

All behavioural testing was done during the light phase, unless otherwise stated. All animal 

procedures were done according to NIH and institutional guidelines (see Appendix). 

4.1 Motor Function Tests  

Grip Force Test Procedure 

In order to test front limb strength, 16 animals from each genotype (Knock-out: 9 male, 7 female; 

Heterozygous: 10 male, 6 female; Wild type: 9 male, 7 female) were randomly selected for this 

test and order of animal testing was randomized. Animals were held by the base of their tail and 

their front limbs were positioned near the bar of the recording unit of the Grip Strength Meter 

(Columbus Instruments, Columbus, Ohio, USA). Animals gripped the bar with their front limbs 

and were pulled back until they released their grip. The strength of their grip was measured in 

lbF (pound force). Each animal was subjected to 5 trials, all within one testing session which 

were then averaged for each animal. Animals were returned to their home cage following trials. 

 

 

 



www.manaraa.com

24 

 

Catwalk Procedure 

11 animals from each genotype (KO: 7 male, 4 female; HET: 7 male, 4 female; WT: 6 male, 5 

female) were randomly selected for this test and order of animal testing was randomized.  

Animals were placed at one end of the CatWalk (Noldus Information Technology Inc., Leesburg, 

Virginia, USA) runway and allowed to walk across back and forth (until a consistent recording 

could be obtained from the animal).  Each animal was subjected to only 1 trial. Animals were 

returned to their home cage following each trial. The CatWalk was cleaned with soap and water, 

and disinfected with 70% EtOH following each trial to avoid olfactory cues. Animal activity was 

monitored and analyzed with CatWalk
TM 

7.0 software (Noldus Information Technology Inc., 

Leesburg, Virginia, USA) to assess measures of gait including regularity index (a measure of 

interlimb coordination) and stride length. 

 

Activity Monitor/Open Field Procedure 

Locomotor boxes (AccuScan Instruments Inc., Columbus, Ohio, USA) were used to assess 

general locomotor activity.  16 animals from each genotype (KO: 9 male, 7 female; HET: 10 

male, 6 female; WT: 9 male, 7 female) were randomly selected for this test and order of animal 

testing was randomized. 

Animals were placed into the open field boxes and were allowed 2 hours of exploration time.   

Animals were tested for five consecutive days, with 1 trial per day. Open field box and 

compartment was kept constant for each animal throughout the five days of testing. Animals 

were returned to their home cage following each trial. Open field boxes were cleaned with soap 

and water, and disinfected with 70% EtOH following each trial to avoid olfactory cues. Animal 

activity was monitored throughout the 2 hour period using VersaMax
TM 

software (AccuScan 

Instruments Inc., Columbus, Ohio, USA) for locomotor activity and number of rearing 

movements. Additionally, centre vs. margin activity was analyzed as an indirect measure of 

anxiety-like behaviour.  



www.manaraa.com

25 

 

4.2 Anxiety Tests 

Elevated Plus Maze Procedure  

11 animals from each genotype (KO: 4 male, 7 female; HET: 8 male, 3 female; WT: 8 male, 3 

female) were randomly selected for this test.  A plus-shaped maze was used with four arms, two 

of which were open and two of which were enclosed by walls. The order of animal testing was 

randomized. Animals were placed in the centre of the maze and were allowed 5 minutes of 

exploration time while being videotaped by a webcam.  Each animal was subjected to only 1 

trial. Animals were returned to their home cage following each trial. All arms of the maze were 

cleaned with soap and water, and disinfected with 70% EtOH following each trial to avoid 

olfactory cues. The number of closed arm/open arm entries was analyzed using ANY-maze
TM

 

software (Stoelting Co., Wood Dale, Illinois, USA) for each animal, as well as time spent in 

centre, open arms, and closed arms. 

Light/Dark Box Procedure 

The light/dark box was used as another measure of anxiety-related behaviour.  12 animals from 

each genotype (KO: 5 male, 7 female; HET: 9 male, 3 female; WT: 9 male, 3 female) were 

randomly selected for this test. Animals were tested during their dark cycle.  The testing room 

was kept dark at all times other than when the experiment was in progress, at which time the 

lights were turned on. The order of animal testing was randomized. Animals were placed in the 

enclosed “dark” section of the light/dark box. Once inside the box, the lights were turned on 

inside the testing room, and the animals were allowed 10 minutes of exploration time. Each 

animal was subjected to only 1 trial. Four animals were tested simultaneously in four light/dark 

boxes. Animals were returned to their home cage following each trial. Light/dark boxes were 

cleaned with soap and water, and disinfected with 70% EtOH following each trial to avoid 

olfactory cues. Animal activity was monitored using VersaMaxTM software (AccuScan 

Instruments Inc., Columbus, Ohio, USA) and duration of time spent in the light and/or dark was 

recorded, as well as latency to enter the light. 
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4.3 Basic Cognitive Function 

Startle Testing Procedure 

Habituation and prepulse inhibition of the acoustic startle response were used as a measure of 

sensorimotor gating.  All 56 animals were used for this testing; 20 KO animals (10 male, 10 

female), 17 heterozygous animals (10 male, 7 female), and 19 wild-type animals (11 male, 8 

female).  Animals were subjected to three days of acclimation: Acclimation Day 1: Animals from 

all three genotypes were placed in holders and then placed into startle boxes (Med Associates 

Inc., St. Albans, Vermont, USA) in a randomized order.  Animals stayed in the startle boxes for 

5 minutes.  No acoustic stimulation was administered.  Acclimation Day 2: Animals were placed 

in holders and then placed into startle boxes, ensuring that each animal was being placed in the 

same startle box that they had used previously.  Animals stayed in the startle boxes for 5 

minutes.  White background noise was administered at 65 dB.  Acclimation Day 3: Animals were 

placed in holders and then placed into the same startle boxes.  Animals were then tested for their 

input/output function; they were exposed to 5 minutes of white background noise at 65 dB, 

immediately followed by 12 stimuli of increasing volume, ranging from 65-120 dB (65, 70, 75, 

80, 85, 90, 95, 100, 105, 110, 115, 120 dB).  

Following the acclimation period of three days, animals were placed into the same startle boxes 

that they had used previously.  Animals were exposed to a 5 minute acclimation period of white 

background noise (65 dB), immediately followed by: 

Block I (Habituation): Animals were exposed to 100 pulse-alone trials of 105 dB stimuli (white 

noise, 20 ms duration, with a varying intertrial interval of 10-20 seconds). 

Block II (Prepulse Inhibition): Animals were exposed to 60 prepulse followed by startle pulse 

trials, and 10 startle pulse alone trials.  75 dB and 85 dB prepulse stimuli were used (4 ms white 

noise) and 105 dB startle pulse stimuli (see above). Interstimulus intervals varied between 10, 

30, and 100 ms. Each trial type (75 dB and 85 dB, at three different intervals, respectively) was 

presented 10 times, in a pseudo-randomized order. 
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Each animal was subjected to the testing blocks as described above (acclimation, Block I, Block 

II) once a day for 5 consecutive days. Four animals were tested simultaneously in four startle 

boxes.  Animal holders were cleaned in between startle box testing.  Animals were returned to 

their home cages following startle box testing. In a subsequent experiment testing for long-term 

habituation, the same experiment was conducted on the same animals approx. 4 months later, but 

with a shortened block I of 30 pulse-alone trials of 105 dB stimuli only, and without block II in 

order to avoid sensitization by over-stimulation.  Data was analyzed using the Startle Reflex 5.95 

software (Med Associates, St. Albans, Vermont, USA).  The startle response amplitude (peak-to-

peak) to the 105 dB pulse was analyzed for each trial. PPI was calculated from block II using the 

following formula: % prepulse inhibition = [1- (prepulse-pulse trial amplitudes)/ (pulse alone 

trial amplitude)]* 100.  Short-term habituation scores were calculated by dividing the average of 

the last 5 trials by the average of the first 5 trials. 

 

4.4 Higher Cognitive Function 

Morris Water Maze Procedure 

14 animals from each genotype (KO: 7 male, 7 female; HET: 10 male, 4 female; WT: 9 male, 5 

female) were randomly selected for this test in the Morris water maze. Genotypes were 

counterbalanced so that each genotype received an equal opportunity to search for the platform 

in each quadrant of the pool. Learning trials were conducted over 4 days, with 4 trials per day. 

Order of animal testing was randomized. A clockwise semi-random set of four start positions 

relative to the location of the platform was used for each animal. One trial each day was from 

each of these four positions. Animals were released into the water at water-level. Each learning 

trial lasted 90 seconds or until the animal reached the platform.  Animals’ search patterns were 

tracked using ANY-maze
TM

 software (Stoelting Co., Wood Dale, Illinois, USA). If the animal 

did not reach the platform after the allotted amount of time (90 seconds), the animal was picked 

up and placed onto the platform for ~15 seconds.  Animals were returned to a cage following 
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each trial to dry off, and were returned to their home cage following completion of all 4 learning 

trials each day.  A probe trial without a platform was given ~ 24 hours after the last acquisition 

day for each animal.  Each probe trial lasted 60 seconds.  Each animal used the same start 

position for the probe trials.  

 

Y Maze Spontaneous Alternation 

This test was used as a measure of working memory.  15 animals from each genotype (KO: 7 

male, 8 female; HET: 10 male, 5 female; WT: 9 male, 6 female) were randomly selected for this 

test. A Y-shaped maze was used with three white opaque plastic arms at a 120º angle from each 

other. The order of animal testing was randomized.  Animals were placed in the centre of the 

maze and were allowed 5 minutes of exploration time. Each animal was subjected to only 1 trial. 

Animals were returned to their home cage following each trial. All arms of the maze were 

cleaned with soap and water, and disinfected with 70% EtOH following each trial to avoid 

olfactory cues. The number of arm entries and number of triads were recorded using a webcam 

(as to not interfere with the animals’ maze exploration) by the experimenter in order to calculate 

the percentage of alternation. 

 

4.5 Statistical Analysis 

IBM SPSS Statistics 20 software was used for all statistical analyses. Outliers for all behavioural 

data were determined using a range of two standard deviations from the mean and were removed 

from the data set. In the case of a behavioural test lasting across multiple trials or days, outlier 

data was replaced with the respective genotype mean for that trial or day if the animal was not 

eliminated from the entire dataset in order to allow for repeated measures ANOVA statistical 

assessment. Two-way ANOVAs, multivariate ANOVAs, and two-way repeated measures 
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ANOVAs were used to assess statistical significance between genotypes as well as any main 

effects of gender and any interactions.  If warranted, Bonferroni and Least Significant Difference 

(LSD) post-hoc tests were used to determine significance between genotypes.  Results were 

considered statistically significant at a p-value of 0.05 (α=0.05).  
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5 Results   

5.1 Effects of deficiency of the α-subunit of the BK channel on 

motor function  

In order to assess motor function, mice underwent a grip force test, their gait was analyzed using 

a CatWalk runway, and they were monitored for two hours each in a locomotor box. BK
-/- 

animals showed significantly reduced forelimb grip force [BK
WT

 average=0.41 ± 0.01, BK
+/-

 

average=0.38 ± 0.02, BK
-/-

 average=0.17 ± 0.01, ANOVA, F(2,42)=119.03, p<0.01, Figure 5.1].   

 

  

Figure 5.1 Grip force measurement. BK
-/- 

animals showed significantly reduced forelimb grip 

force compared to BK
+/-

and BK
WT

 animals.  Bonferroni post-hoc analysis used to determine 

significance between genotypes. No main effect of gender was present [F(1,42)=3.97, p=0.053]. 

BK
WT

 n=16, BK
+/-

 n=16, BK
-/-

 n=16. 
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BK
-/- 

animals seemed to walk funny.  Indeed, when their gait was analyzed, BK
-/- 

animals 

showed a significantly impaired regularity index [BK
WT

 average=99.66 ± 0.35, BK
+/-

 

average=97.92 ± 0.70, BK
-/-

 average=91.54 ± 2.18, ANOVA, F(2,25)=13.36, p<0.01, Figure 5.2] 

compared to BK
+/-

and BK
WT

 animals.   

 

 

Figure 5.2 Regularity index (a measure of interlimb coordination) assessment. BK
-/-

 animals 

showed significantly impaired regularity index compared to BK
+/-

and BK
WT 

animals. Bonferroni 

post-hoc analysis used to determine significance between genotypes. No main effect of gender 

was present [F(1,25)=0.96, p=0.34]. BK
WT

 n=10, BK
+/-

 n=10, BK
-/-

 n=11. 
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a) 

 

b) 

 

Figure 5.3 Examples of Catwalk footprint analyses from a BK
WT

 animal (a) and a BK
-/-

 animal 

(b).  Right front and hind paws are pictured in light and dark green, respectively; left front and 

hind paws are pictured in light and dark red, respectively. a) Footprint pattern of a BK
WT

 animal 

scoring a 100% regularity index. b) Footprint pattern of a BK
-/-

 animal scoring an 88.89% 

regularity index. 

 

  



www.manaraa.com

33 

 

Stride length was also significantly reduced in BK
-/- 

animals as compared to BK
+/-

and BK
WT

 

animals in the right front [BK
WT

 average=8091.4 ± 160.12, BK
+/-

 average=7891 ± 149.97, BK
-/-

 

average=5755.1 ± 172.61, ANOVA, F(2,24)=57.48, p<0.01], left front [BK
WT

 average=8085.6 ± 

173.86, BK
+/-

 average=7749.1 ± 160.14, BK
-/-

 average=5333.5 ± 221.27, ANOVA, 

F(2,24)=55.79), p<0.01], right hind [BK
WT

 average=7978.5 ± 119.01, BK
+/-

 average=7815.2 ± 

185.45, BK
-/-

 average=5155.5 ± 187.2, ANOVA, F(2,24)=86.25, p<0.01], and left hind [BK
WT

 

average=7823.1 ± 182.95, BK
+/-

 average=7585.2 ± 131.02, BK
-/-

 average=5383.2 ± 206.79, 

ANOVA, F(2,24)=53.21, p<0.01] paws (Figure 5.4).   

 

 

Figure 5.4 Stride length assessment. BK
-/- 

animals showed significantly reduced stride length 

compared to BK
+/-

and BK
WT

 animals in the right front, left front, right hind, and left hind paws. 

Bonferroni post-hoc analysis used to determine significance between genotypes. No main effect 

of gender was present in the right front [F(1,24)=0.40, p=0.54], left front [F(1,24)=0.20, p=0.66], 

right hind [F(1,24)=0.95, p=0.34], or left hind [F(1,24)=0.02, p=0.88] paw measures. BK
WT

 

n=10, BK
+/-

 n=9, BK
-/-

 n=11. 
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When tested in the locomotor box, however, genotypes did not significantly differ in terms of 

total distance travelled [ANOVA, F(2,40)=0.37, p=0.70, Figure 5.5], sum of total activity 

[ANOVA, F(2,41)=2.57, p=0.09, Figure 5.6], or number of rearing movements [ANOVA, 

F(2,39)=1.71, p=0.19, Figure 5.7], indicating that BK
-/- 

animals despite their funny gait and 

reduced grip force seemed to be as active as their heterozygous and wild-type littermates. 

 

 

Figure 5.5 Total distance travelled over a two hour period in the open field box. Genotypes did 

not significantly differ overall in terms of total distance travelled.  A main effect of time interval 

was present [F(23,920)=42.34, p<0.01]. No time interval by genotype by gender interaction 

[F(46,920)=0.89, p=0.68] or main effect of gender [F(1,40)=2.99, p=0.09] was present.  BK
WT

 

n=16, BK
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 n=15, BK
-/-

 n=15. 
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Figure 5.6 Sum of total activity occurring in the open field box over a two hour period across 

five days. Genotypes did not significantly differ overall in terms of total activity. A main effect 

of day was present F(4,164)=13.64, p<0.01 as well as a main day by genotype interaction 

[F(8,164)=3.37, p<0.01]. No day by genotype by gender interaction [F(8,164)=0.24, p=0.98] or 

main effect of gender [F(1,41)=0.73, p=0.40] was present.  BK
WT

 n=16, BK
+/-

 n=15, BK
-/-

 n=16. 

 

 

Figure 5.7 Number of rearing movements occurring over a two hour period across five days. 

Genotypes did not significantly differ in terms of number of rearing movements.  A main effect 

of day was present [F(4,156)=5.29, p<0.01], as well as a main day by gender interaction 

[F(4,156)=2.52, p<0.05]. No day by genotype by gender interaction [F(8,156)=0.69, p=0.70] or 

main effect of gender [F(1,39)=3.27, p=0.08] was present.  BK
WT

 n=15, BK
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5.2 Effects of deficiency of the α-subunit of the BK channel in 

measures of sensory gating  

BK
-/- 

animals showed a significantly lower baseline startle compared to BK
+/-

and BK
WT 

animals 

in block I (habituation block) [BK
WT

 average=364.99± 27.29, BK
+/-

 average=316.72 ± 15.99, 

BK
-/-

 average=249.83 ± 11.20, ANOVA, F(2,47)=9.01, p<0.01, Figure 5.8] but genotypes were 

equal in block II [PPI block, see Materials and Methods, BK
WT

 average=245.96 ± 22.16, BK
+/-

 

average=232.33 ± 17.40, BK
-/-

 average=207.66 ± 6.71, ANOVA, F(2,48)=1.14, p=0.33, Figure 

5.8].   
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a) 

  

b) 

 

Figure 5.8 Baseline startle measures from block I (a) and block II (b). a) BK
-/- 

animals showed a 

significantly lower baseline startle compared to BK
+/-

and BK
WT 

animals. LSD post-hoc analysis 

used to determine significance between genotypes. No main effect of gender was present 

F(1,47)=1.48, p=0.23. BK
WT

 n=18, BK
+/-

 n=15, BK
-/-

 n=20. b) Baseline startle was equal among 

genotypes. No main effect of gender was present [F(1,48)=1.94, p=0.17]. BK
WT

 n=19, BK
+/-

 

n=16, BK
-/-

 n=19.  

  

0

100

200

300

400

500

BKᵂᵀ BK⁺/⁻ BK⁻/⁻ 

B
a

se
li

n
e

 S
ta

rt
le

 

A
m

p
li

tu
d

e
 (

a
rb

it
ra

ry
 

u
n

it
s)

 

0

50

100

150

200

250

300

BKᵂᵀ BK⁺/⁻ BK⁻/⁻ 

B
a

se
li

n
e

 S
ta

rt
le

 

A
m

p
li

tu
d

e
 (

a
rb

it
ra

ry
 

u
n

it
s)

 



www.manaraa.com

38 

 

In terms of short-term habituation, BK
-/- 

animals showed significantly less attenuation of startle 

responses during block I compared to BK
WT

 animals [ANOVA, F(2,50)=4.56, p<0.05, Figure 

5.9], as well as significantly larger short term habituation scores compared to BK
WT

 and BK
+/-

  

animals [BK
WT

 average=0.77 ± 0.03, BK
+/-

 average=0.79 ± 0.05, BK
-/-

 average=0.92 ± 0.03, 

ANOVA, F(2,47)=4.91, p<0.05, Figure 5.10], indicating that they did not habituate. Genotypes 

did not differ in terms of long-term habituation across training sessions.  Indeed, none of the 

genotypes showed any long-term habituation, see Figure 5.11 [ANOVA, F(2,50)=0.49, p=0.62].  

 

 

Figure 5.9 Short-term habituation of the acoustic startle response. BK
-/- 

animals habituated to 

86% of their initial three startle responses, while BK
WT

 and BK
+/-

animals habituated to 75% and 

79%, respectively. BK
WT

 animals showed significant attenuation of startle amplitudes compared 

to BK
-/- 

animals. Bonferroni post-hoc analysis used to determine significance between genotypes. 

A main effect of trial was present [F(19,950)=21.95, p<0.01], as well as a main interaction of 

trial by genotype [F(38,950)=1.61, p<0.05]. No trial by genotype by gender interaction was 

present [F(38,950)=1.18, p=0.22]. No main effect of gender was present [F(1,50)=0.29, p=0.60]. 

BK
WT

 n=19, BK
+/-

 n=17, BK
-/-

 n=20. 
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Figure 5.10 Short-term habituation scores of the last five startle responses vs. the first five startle 

responses.  BK
-/- 

animals showed significantly larger short term habituation scores compared to 

BK
WT 

and BK
+/-

 animals.  LSD post-hoc analysis was used to determine significance between 

genotypes. No main effect of gender was present [F(1,47)=0.04, p=0.84]. BK
WT

 n=18, BK
+/-

 

n=16, BK
-/-

 n=19. 

 

 

Figure 5.11 Long-term habituation of the acoustic startle response.  Genotypes did not 

significantly differ overall across days. No day by genotype by gender interaction was present 

[F(8,200)=0.24, p=0.98]. No main effect of gender was present [F(1,50)=0.87, p=0.36].  BK
WT

 

n=19, BK
+/-

 n=17, BK
-/-

 n=20. 
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Prepulse inhibition in BK
-/- 

animals was significantly impaired compared to BK
+/-

and BK
WT 

animals at 10 ms [BK
WT

 average=0.33 ± 0.06, BK
+/-

 average=0.36 ± 0.04, BK
-/-

 average=0.19 ± 

0.03, ANOVA, F(2,50)=3.42, p<0.05], 30 ms [BK
WT

 average=0.35 ± 0.04, BK
+/-

 average=0.29 ± 

0.04, BK
-/-

 average=0.17 ± 0.04, ANOVA, F(2,50)=5.42, p<0.01], and 100 ms [BK
WT

 

average=0.50± 0.03, BK
+/-

 average=0.36 ± 0.03, BK
-/-

 average=0.25 ± 0.03, ANOVA, 

F(2,50)=18.38, p<0.01] interstimulus intervals with both the 75dB prepulse and the 85 dB 

prepulse [10 ms [BK
WT

 average=0.42 ± 0.03, BK
+/-

 average=0.34 ± 0.03, BK
-/-

 average=0.20 ± 

0.04, ANOVA, F(2,50)=10.91, p<0.01], 30 ms [BK
WT

 average=0.42± 0.03, BK
+/-

 average=0.34 

± 0.03, BK
-/-

 average=0.20 ± 0.03, ANOVA, F(2,50)=13.23, p<0.01], and 100 ms [BK
WT

 

average=0.57± 0.03, BK
+/-

 average=0.52 ± 0.02, BK
-/-

 average=0.33 ± 0.02, ANOVA, 

F(2,50)=23.83, p<0.01] (Figure 5.12)].  BK
+/-

animals significantly differed from BK
WT

 animals 

at the 100 ms interstimulus level with the 75 dB prepulse [ANOVA, F(2,50)=18.38, p<0.01, 

Figure 5.12]. 
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a) 

  

b) 
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Figure 5.12 Percent prepulse inhibition of the acoustic startle response with 75dB prepulse (a) 

and 85 dB prepulse (b). a) Prepulse inhibition in BK
-/- 

animals was significantly impaired 

compared to BK
+/-

and BK
WT 

animals with the 10, 30, and 100 ms interstimulus intervals. BK
+/-

animals significantly differed from BK
WT

 animals in the 100 ms ISI level condition. LSD Post-

hoc analysis used to determine significant differences between genotypes in each ISI level 

condition. No main effect of gender was present at the 10 [F(1,50)=2.05, p=0.16], 30 

[F(1,50)=0.19, p=0.67] or 100 [F(1,50)=3.21, p=0.08] interstimulus intervals. b) Prepulse 

inhibition in BK
-/- 

animals was significantly impaired compared to BK
+/-

and BK
WT 

animals in the 

10, 30, and 100 ms interstimulus intervals. LSD post-hoc analysis used to determine significant 

differences between genotypes in each ISI level condition. No main effect of gender was present 

at the 10 (F(1,50)=0.55,p=0.46),  30 (F(1,50)=0.17, p=0.68), or 100 (F(1,50)=0.56, p=0.46) 

interstimulus intervals. BK
WT

 n=19, BK
+/-

 n=17, BK
-/-

 n=20. 
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5.3 Effects of deficiency of the α-subunit of the BK channel in 

measures of higher cognitive function 

We used the Y-maze to test for working memory. Genotypes did not significantly differ in terms 

of percent spontaneous alternation in the Y-maze [BK
WT

 average=52.16 ± 3.41, BK
+/-

 

average=51.95 ± 3.17, BK
-/-

 average=53.89 ± 3.25, ANOVA, F(2,38)=0.03, p=0.97, Figure 

5.13], indicating normal working memory function in BK
-/- 

mice.  

 

 

Figure 5.13 Percent spontaneous alternation in the Y-maze. Genotypes did not significantly 

differ in percentage of spontaneous alternation. No main effect of gender was present 

[F(1,38)=2.12, p=0.15]. BK
WT

 n=15, BK
+/-

 n=15, BK
-/-

 n=14. 
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Spatial learning and memory was tested in the Morris water maze.  BK
-/- 

animals showed a 

significantly longer distance [ANOVA, F(2,35)=9.38, p<0.01] as well as latency [ANOVA, 

F(2,35)=14.18, p<0.01] to reach the target in the Morris water maze compared to BK
+/-

and BK
WT

 

animals (Figure 5.15), indicating slower learning of the task (see Figure 2.16 for learning curves 

from earlier vs. later days of training). Mean swimming speed was equal among genotypes 

[ANOVA, F(2,36)=1.20, p=0.31, Figure 5.14].  

 

 

Figure 5.14 Mean swimming speed of four trials per day across four days in the Morris water 

maze. Genotypes did not significantly differ overall in terms of mean speed.  A main effect of 

day was present [F(3,108)=14.81, p<0.01]. No day by genotype by gender interaction 

[F(6,108)=0.37, p=0.89] or main effect of gender [F(1,36)=0.41, p=0.53] was present. BK
WT

 

n=14, BK
+/-

 n=14, BK
-/-

 n=14. 
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a) 

 

b) 

 

Figure 5.15 Average distance (a) and latency (b) to target of four trials per day across four days 

in the Morris water maze. a) BK
-/- 

animals showed a significantly longer distance to reach the 

target compared to BK
+/-

and BK
WT

 animals. LSD post-hoc analysis used to determine significant 

differences between genotypes. A main effect of day was present [F(3,105)=43.17, p<0.01]. No 

day by genotype by gender interaction [F(6,105)=0.23, p=0.97] or main effect of gender 

[F(1,35)=0.01, p=0.91] was present. BK
WT

 n=14, BK
+/-

 n=13, BK
-/-

 n=14. b) BK
-/- 

animals 

showed a significantly longer latency to reach the target compared to BK
+/-

and BK
WT 

animals. 

LSD post-hoc analysis used to determine significant differences between genotypes. A main 

effect of day was present [F(3,105)=49.62, p<0.01]. No day by genotype by gender interaction 

[F(6,105)=0.13, p=0.99] or main effect of gender [F(1,35)=0.87, p=0.36] was present. BK
WT
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a)   

 

b) 

 

Figure 5.16 Learning curves shown in terms of latency to target across four trials on day 2 (a) 

and day 4 (b) of training in the Morris water maze. a) BK
-/- 

animals showed a significantly longer 

latency to reach the target compared to BK
+/-

and BK
WT 

animals [F(2,36)=8.21, p<0.01]. LSD 

post-hoc analysis used to determine significant differences between genotypes.  No trial by 

genotype by gender interaction [F(6,108)=1.82, p=0.10] or main effect of gender [F(1,36)=2.34, 

p=0.74] was present. BK
WT

 n=14, BK
+/-

 n=14, BK
-/-

 n=14. b) BK
-/- 

animals showed a 

significantly longer latency to reach the target compared to BK
+/-

and BK
WT 

animals 

[F(2,36)=5.82, p<0.01]. LSD post-hoc analysis used to determine significant differences between 

genotypes. A main effect of trial was present [F(3,108)=4.98, p<0.01]. No trial by genotype by 

gender interaction [F(6,108)=0.64, p=0.70] or main effect of gender [F(1,36)=0.53, p=0.47] was 

present. BK
WT

 n=14, BK
+/-

 n=14, BK
-/-

 n=14.     
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BK
-/- 

animals spent significantly more time in the target quadrant on probe trial day than BK
+/-

animals [BK
WT

 average=47.5 ± 4.51, BK
+/-

 average=39.96 ± 2.87, BK
-/-

 average=56.18 ± 4.90, 

ANOVA, F(2,36)=3.34, p<0.05, Figure 5.17], indicating that once they learned the task they had 

no deficits in memory and remembered the task. Genotypes did not differ in terms of percentage 

of time spent per quadrant in the opposite [F(2,36)=2.31, p=0.11], left [F(2,36)=0.70, p=0.50] or 

right [F(2,36)= 3.20, p=0.053] quadrant conditions.  

 

 

Figure 5.17 Percentage of time spent per quadrant of the Morris water maze on probe trial day.  

BK
-/- 

animals spent significantly more time in the target quadrant than BK
+/-

animals but did not 

differ from BK
WT

 animals. LSD post-hoc analysis used to determine significant differences 

between genotypes. Genotypes did not differ in terms of percentage of time spent per quadrant in 

the opposite, left, or right quadrants. No main effect of gender was present  for the target 

[F(1,36)=1.28, p=0.27], opposite [F(1,36)=1.54, p=0.22], left [F(1,36)=0.01, p=0.92], or right 

[F(1,36)=0.09, p=0.77] quadrants. BK
WT

 n=14, BK
+/-

 n=14, BK
-/-

 n=14. 
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5.4 Effects of deficiency of the α-subunit of the BK channel on 

measures of anxiety-like behaviour 

BK
-/- 

animals spent significantly more time in the centre of the open field box than BK
+/-

and 

BK
WT

 animals [ANOVA, F(2,40)=5.98, p<0.01, Figure 5.18], indicating a lower level of anxiety 

than their wild-type counterparts.   

 

 

Figure 5.18 Amount of time spent in the centre of the open field box over a period of two hours 

across five days. BK
-/- 

animals spent significantly more time in the centre than BK
+/-

and BK
WT

 

animals. Bonferroni post-hoc analysis used to determine significant differences between 

genotypes. A main day by gender interaction was present [F(1,40)=6.91, p<0.01], as was a main 

effect of gender [F(1,40)=8.36, p<0.01]. No day by genotype by gender interaction 

[F(8,160)=0.53, p=0.83] was present. BK
WT

 n=15, BK
+/-

 n=15, BK
-/-

 n=16. 
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In order to test for differences in anxiety levels, animals were tested in two classical anxiety 

paradigms, the elevated plus maze and the light/dark boxes. Number of open arm entries in the 

elevated plus maze was higher in BK
-/- 

animals compared to BK
WT

 animals [BK
WT

 average=4.82 

± 0.74, BK
+/-

 average=8.09 ± 1.38, BK
-/-

 average=11.5 ± 1.63, ANOVA, F(2,26)=6.06, p<0.01, 

Figure 5.19]. Closed vs. open arm time ratios in the elevated plus maze were significantly lower 

in BK
-/- 

animals than in BK
WT

 animals [BK
WT

 average=23.23 ± 7.0, BK
+/-

 average=12.56 ± 4.38, 

BK
-/-

 average=1.45 ± 0.23, ANOVA, F(2,25)=8.32, p<0.01, Figure 5.20], confirming potential 

lower anxiety levels in BK
-/-  

mice.   

 

 

Figure 5.19 Sum of open arm entries in the elevated plus maze. Number of open arm entries was 

significantly higher in BK
-/- 

animals compared to BK
WT

 animals. Bonferroni post-hoc analysis 

used to determine significant differences between genotypes. No main effect of gender was 

present [F(1,26)=1.27, p=0.27]. BK
WT

 n=11, BK
+/-

 n=11, BK
-/-

 n=10. 
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Figure 5.20 Time spent in closed vs. open arms of the elevated plus maze. Closed vs. open arm 

time ratio was significantly lower in BK
-/- 

animals than in BK
WT

 animals. Bonferroni post-hoc 

analysis was used to determine significant differences between genotypes. A main effect of 

gender was present [F(1,25)=8.30, p<0.01]. BK
WT

 n=11, BK
+/-

 n=10, BK
-/-

 n=10. 

 

In the light/dark boxes, latency to enter the light section from starting position in dark section 

[BK
WT

 average=460.38 ± 72.56, BK
+/-

 average=222.78 ± 80.61, BK
-/-

 average=241.2 ± 69.09, 

ANOVA, F(2,30)=2.26, p=0.12] as well as duration of time spent in the light section [BK
WT

 

average=4.91 ± 1.69, BK
+/-

 average=31.75 ± 10.08, BK
-/-

 average=36.5 ± 11.46, ANOVA, 

F(2,30)=2.76, p=0.08] was not significantly different between genotypes (Figure 5.21). Light vs. 

dark time ratios also did not significantly differ between genotypes [BK
WT

 average=0.01 ± 

0.003, BK
+/-

 average=0.06 ± 0.02, BK
-/-

 average=0.07 ± 0.02, ANOVA, F(2,30)=2.59, p=0.09, 

Figure 5.22], which does not support a difference in anxiety levels between genotypes. 
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a) 

 

b) 

 

Figure 5.21 Latency to enter the light section (a) and duration spent in light section (b) of the 

light/dark box. a) Latency to enter the light section from starting position in dark section was not 

significantly different between genotypes. No main effect of gender was present [F(1,30)=0.05, 

p=0.82]. BK
WT

 n=12, BK
+/-

 n=12, BK
-/-

 n=12. b) Duration of time spent in the light section did 

not differ significantly between genotypes. No main effect of gender was present [F(1,30)=0.01, 

p=0.93]. BK
WT

 n=12, BK
+/-

 n=12, BK
-/-

 n=12. 
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Figure 5.22 Time spent in the light section vs. the dark section of the light/dark box. Light vs. 

dark time ratios did not significantly differ between genotypes. No main effect of gender was 

present [F(1,30)=0.002, p=0.97]. BK
WT

 n=12, BK
+/-

 n=12, BK
-/-

 n=12. 
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6 Discussion 

The results of this research project aim to aid in the further understanding of some of the various 

physiological roles of BK channels, as investigated in BK channel α subunit homozygous and 

heterozygous knock-out mice.  The work presented here showed that homozygous knock-out
 

animals displayed significantly reduced forelimb grip force, significantly impaired inter-limb 

coordination, as well as significantly shorter stride lengths in front and hind paws as compared to 

heterozygous and wild-type animals. However, even with these motor function deficits being 

present, homozygous knock-out animals were observed to be no less active compared to 

heterozygous and wild-type animals, as measured in the open field box where no significant 

differences were found among genotypes in terms of the total distance travelled over a two hour 

period, the sum of total activity occurring over a two period, as well as the recorded number of 

rearing movement occurrences.  Additionally, homozygous knock-out
 
animals’ activity was 

observed as being comparable to that of heterozygous and wild-type animals in the Morris water 

maze, as the analysis of mean swimming speeds revealed no significant difference among 

genotypes.  Measures of sensorimotor gating mechanisms showed that homozygous animals 

displayed significantly less attenuation of startle responses compared to wild-type animals across 

100 trials in response to repetitive acoustic stimulation, as well as significantly larger short-term 

habituation scores compared to heterozygous and wild-type animals, indicating that homozygous 

knock-out animals did not habituate (short-term).  Long-term habituation across days of testing 

was not significantly different among genotypes, and in fact none of the genotypes were 

observed to display long-term habituation.  Furthermore, measures of prepulse inhibition 

revealed significantly less percent inhibition in homozygous knock-out animals compared to 

heterozygous and wild-type animals with both prepulse intensities used (75 and 85 dB), at all 

three interstimulus intervals tested (10, 30, and 100 ms), indicating impairment of sensorimotor 

gating in this measure in addition to deficits in short-term habituation.   Analysis of higher 

cognitive function included measures of spatial acquisition of a task, spatial memory, and 

working memory.  Homozygous knock-out
 
animals displayed both a significantly longer latency 

as well as distance to reach the target (platform) in the Morris water maze compared to 
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heterozygous and wild-type animals, suggesting that these animals were slower to acquire and 

learn the task.  When tested immediately following four days of training in the Morris water 

maze, homozygous knock-out
 
animals spent significantly more time in the target quadrant than 

heterozygous animals but did not differ from wild-type animals, showing that once the task had 

been acquired, homozygous knock-out
 
animals were able to remember it and did not display 

deficits in spatial reference memory.  There was no significant difference among genotypes in 

terms of percent spontaneous alternation in the Y-maze, indicating normal working memory 

function in homozygous knock-out mice.  Assessment of anxiety-like behaviour revealed a lower 

level of anxiety in homozygous knock-out animals, as measured in the open field box where 

homozygous knock-out animals spent significantly more time in the centre of the box than 

heterozygous and wild-type animals, as well as in the elevated plus maze where homozygous 

knock-out animals were recorded to have significantly more open arm entries and significantly 

lower closed vs. open arm time ratios compared to wild-type animals.  However, no dissimilarity 

in anxiety levels was found as measured in light/dark boxes, where latency to enter the light 

section, duration of time spent in the light section, as well as light vs. dark time ratios did not 

significantly differ among genotypes. Outliers for all behavioural data were determined using a 

range of two standard deviations from the mean and were removed from the respective data set.  

Each data set for each behavioural test was treated individually and any outliers determined for a 

particular data set did not affect these animals’ probability of being an outlier in a different data 

set.  In other words, if an outlier was removed from one data set, this same animal may be 

present in another data set, provided that this animal was not determined as being an outlier in 

this subsequent data set.  

 

6.1 Choice of mouse model  

BK channels have been implicated to be of importance in auditory processing and in the 

development of normal hearing function (Kurt et al., 2012; Ruttiger et al., 2004).  Former 

research with BK channel knock-out mice using an SV129 mouse line has reported these animals 
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to have hearing deficits (Ruttiger et al., 2004).  Hearing function measurements have also been 

conducted on F1 generation hybrid α subunit homozygous knock-out and control mice, generated 

by mating heterozygous C57BL6 and SV129 mice, which is strictly relevant and crucial to this 

research project as this genetic mouse model was used for the current research project.  Auditory 

brainstem responses revealed that hearing thresholds were not significantly different between 

control and knock-out mice, as was true for tone-evoked ABR hearing thresholds for low and 

middle frequency ranges of hearing (Unpublished data, personal communication Lukas 

Ruettiger). This data indicates that F1 generation hybrid BK channel knock-out mice generated 

by mating heterozygous C57BL6 and SV129 mice have no reported hearing deficits, allowing 

these animals to be used in behavioural tests requiring normal hearing function, and specifically 

to this research, in measures of sensorimotor gating of the acoustic startle reflex.   

The results of this study showed that the homozygous Slo1 knock-out
 
mice used here displayed 

an abnormal motor function phenotype as seen through reduced forelimb grip force and 

impairment in inter-limb coordination as well as in stride length, confirming a physiological role 

for BK channels in the control of movement.  This finding has also already been established 

through previous research with mice lacking the α subunit of the BK channel that were bred on a 

C57BL6 and SV129 background (Sausbier et al., 2004).   Surprisingly, despite these motor 

function deficits being present, homozygous knock-out animals were observed to be no less 

active at both walking and swimming than heterozygous or wild-type animals, indicating normal 

locomotion and allowing for all three genotypes to be subjected to and compared in a multitude 

of behavioural tests requiring movement.  In summary, the control experiments on hearing, 

motor function, and locomotion indicate that the hybrid F1 BK channel knock-out mouse used in 

this study is a suitable model for testing sensorimotor function and learning and memory 

performance. 

 



www.manaraa.com

56 

 

6.2 Sensorimotor gating   

Findings from previous research with Aplysia (Castellucci et al., 1970), Drosophila (Engel and 

Wu, 1998), and Caenorhabditis elegans (C. Rankin, personal communication), had suggested 

short-term habituation to be mediated through a presynaptic mechanism involving synaptic 

depression and reduced neurotransmitter release and had proposed the BK channel to be a key 

player in the mediation of this process. The results of the current research project  have indicated 

that Slo1 homozygous knock-out mice lack short-term habituation, as seen through these 

animals’ less attenuation of startle responses compared to wild-type animals in response to 

repetitive acoustic stimulation, as well as larger short-term habituation scores compared to wild-

type and heterozygous animals.  Of potential importance to this research is the anxiety level of 

the animal subjects, which could possibly influence the animals’ performance during behavioural 

testing.  The results of this work have suggested a novel finding in that α subunit homozygous 

knock-out mice may have lower levels of anxiety than their heterozygous and wild-type 

counterparts.  However, these results have been inconclusive; measures of anxiety as shown 

through open field box and elevated plus maze testing have suggested knock-out animals to be 

less anxious, while light/dark testing did not reveal a difference in anxiety levels among 

genotypes. According to the dual-process theory by Groves and Thompson (1970), the processes 

of habituation and sensitization interact with one another and together yield the net behavioural 

outcome in response to repetitive stimulus presentation. Sensitization of the startle reflex has 

been investigated in studies of anxiety and appears to be pronounced by anxiety-evoking factors 

such as fear and stress (Liang et al., 1992).  Accordingly, the sensorimotor gating mechanism of 

habituation is potentially occluded by the simultaneous process of sensitization and thus by 

anxiety-evoking factors. The results of this research have shown that homozygous knock-out
 

animals displayed less habituation, which could generally mean that these mice might just 

display stronger sensitization overlying the habituation.  However, homozygous knock-out 

animals were observed to display lower levels of anxiety.  Therefore, it is not feasible that the 

lack of startle attenuation during repeated testing is due to increased sensitization, as the less 

anxious knock-out animals should show less sensitization.  Instead, the results indicate that 

short-term habituation of startle is mediated by the BK channel, confirming findings of impaired 
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habituation previously shown in C. elegans and drosophila Slo1 knock-out animals.  It further 

suggests that short-term habituation is mediated through a highly conserved mechanism.   

Ca
2+

 - and voltage-activated potassium (BK) channels have been implicated to be physiologically 

important in the control of neuronal excitability and neurotransmitter release (Salkoff et al., 

2006; Faber and Sah, 2003; Wang, 2008), as well as in the modulation of changes in synaptic 

efficacy such as synaptic depression (Robitaille and Charlton, 1992; Zucker 1989).  Additionally, 

BK channels have been proposed to be found most abundantly in synaptic terminals in many 

types of neurons (Knaus et al., 1996; Salkoff et al., 2006; Hu et al., 2010; Wang et al., 2001).  

Accordingly, research on the neuronal circuitry underlying short-term habituation of the acoustic 

startle response has found this process to be mediated intrinsically by the acoustic startle 

pathway itself and specifically at the synapse between the cochlear root neurons and the PnC 

giant neurons (Davis et al, 1982b).  Further investigation revealed that electrical stimulation of 

these auditory afferents induced synaptic depression in the synapse with PnC giant neurons 

(Weber et al., 2002; Pilz et al., 2004).  Additionally, the mechanism responsible for the synaptic 

depression underlying this process has been suggested to be localized presynaptically (Simons-

Weidenmaier et al., 2006), confirming short-term habituation as being mediated along the 

sensory pathways to the PnC.  This study therefore strongly supports the hypothesis that 

activation of BK channels that are located at the pre-synaptic sensory terminals in the PnC 

mediate synaptic depression underlying short-term habituation of startle.  Taken together, the BK 

channel seems to fulfill the requirements for the highly conserved mechanism mediating short-

term habituation, and thus appears to be a well-suited candidate to explain the cellular and 

molecular mechanisms underlying this behavioural process, which have been relatively unknown 

thus far.  The results of this research have also yielded measures of prepulse inhibition of the 

acoustic startle response to be impaired in homozygous knock-out animals compared to 

heterozygous and wild-type animals
 
with both prepulse intensities used (75 and 85 dB), at all 

three interstimulus intervals tested (10, 30, and 100 ms).  This novel finding indicates that BK 

channels may possibly function to mediate mechanisms of sensorimotor gating not only in terms 

of short-term habituation, but also in prepulse inhibition.  The neuronal circuitry underlying 

prepulse inhibition of the acoustic startle response is comprised of several midbrain structures, 
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and this pathway is thought to run parallel to the primary acoustic startle pathway, providing 

feed-forward inhibition from the PPTg onto the giant neurons in the PnC.  Additionally, the 

PPTg itself is thought to be modulated by several other brain regions, such as the ventral 

pallidum, nucleus accumbens, hippocampus, and amygdala (Koch, 1999; Yeomans et al., 2010; 

Fendt et al., 2001).  BK channels have been suggested to be expressed in many structures within 

the brain where they are regulators of neuronal excitability and neurotransmitter release (Salkoff 

et al., 2006; Faber and Sah, 2003; Wang, 2008; Wang et al., 2001), including several structures 

implicated in modulating PPI.  In contrast to the role of BK channels in short-term habituation, 

where there is a clear hypothetical mechanistic model in place, it is impossible to hypothesize at 

this point how BK channels modulate PPI.  Future research will need to focus on localizing 

where in the proposed PPI circuitry BK channels are affecting this mechanism of sensorimotor 

gating.   

 

6.3 Higher cognitive function 

 The work presented here has shown that Slo1 homozygous knock-out mice displayed 

both a longer latency as well as distance to reach the target platform in the Morris water maze 

compared to heterozygous and wild-type animals, suggesting that these animals were slower to 

learn the task and therefore have impaired task acquisition processes. These results are supported 

by findings from previous research whereby BK channels in the CA1 region of the hippocampus 

of rats were blocked with paxilline, a BK channel blocker, and these animals were subsequently 

trained to perform a trace eyeblink conditioning learning task.  These animals displayed slower 

acquisition of the task compared to control animals (Matthews and Disterhoft, 2009). However, 

these animals were able to remember the task after eventually learning it, suggesting that 

hippocampal-dependent learning was not completely abolished, but impaired.  Similarly, the 

results of the current research project showed that Slo1 homozygous knock-out mice were able to 

remember the correct location of the target platform when tested after four days of training as 

well as wild-type animals, suggesting that while acquisition of the task was impaired, spatial 
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reference memory in these animals was intact. Additionally, assessment of working memory in 

these animals revealed no differences between genotypes, suggesting normal working memory 

function in Slo1 homozygous knock-out mice.  Taken together, a role for BK channels in the 

acquisition of a task has been indicated through the results of this research project, and this is 

supported by results found through previous research.  It should be noted however that 

assessment of anxiety-like behaviour suggested a lower level of anxiety in homozygous knock-

out animals, which is a potential confounding variable as spatial learning in the Morris water 

maze is aversively motivated and lower levels of stress and anxiety may result in impaired task 

performance (D’Hooge and De Deyn, 2001).  BK channels have been suggested to be important 

regulators of neuronal excitability as well as playing a role in contributing to the fast phase of the 

afterhyperpolarization (AHP) potential (Salkoff et al., 2006; Faber and Sah, 2003), and in 

controlling neurotransmitter release (Wang, 2008), which is a potential mechanism through 

which BK channels may mediate synaptic plasticity and thereby task acquisition processes.  The 

blocking of BK channels has been shown to result in increased neuronal excitability and firing 

rate in pyramidal neurons, resulting in excessive excitability and neuronal noise and this in turn 

may be responsible for disrupting acquisition processes and therefore result in impaired 

hippocampal-dependent learning of an eyeblink conditioning task (Matthews and Disterhoft, 

2009).  This suggests that normal BK channel activity is necessary for acquisition of this task, 

and since functional BK channels are also necessary for the acquisition of a spatial learning task, 

as suggested by the results of the current research project, these channels may be mediating the 

learning of tasks in a similar way.  Spatial learning in the Morris water maze depends not only on 

the hippocampus, but also on several other brain regions including the cerebellum, which interact 

with one another and with neurotransmitter systems to form a network that underlies the learning 

process (D’Hooge and De Deyn, 2001).   BK channels have have been suggested as playing 

important roles in controlling neurotransmitter release (Wang, 2008), and have also been shown 

to have high levels of expression in both the hippocampus and cerebellum in mice (Sausbier et 

al., 2006).  Therefore, BK channels may be mediating spatial learning processes by regulating 

neuronal excitability and neurotransmitter release, and future research is needed in order to 

localize where this effect is being mediated. 
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6.4 Implications  

The results of this research project suggest an important role for BK channels in sensorimotor 

gating mechanisms, as well as in spatial learning processes, indicating that BK channels have 

physiological roles in both basic and higher cognitive function.  Deficits in sensorimotor gating 

result in information overload received by the brain, which is present in many neurological 

disorders such as fragile X syndrome (FXS, Frankland et al., 2004), autistic disorder (AD) (Perry 

et al., 2007), and schizophrenia (Geyer and Braff, 1982, Braff et al., 1978).  Additionally, BK 

channels have been found to be involved in the molecular basis of FXS through regulation of 

normal action potential duration (Deng et al., 2013), as well as being associated with autism due 

to lower levels of expression of the gene coding for the pore forming α subunit of the BK 

channel (Laumonnier et al., 2006), and have also been suggested to be part of the etiology of 

schizophrenia (Zhang et al., 2006).  Cognitive deficits observed in neurological disorders are 

believed to be at least in part due to deficits in sensorimotor gating mechanisms (Braff and Light, 

2004; Perry et al., 1999; Singer et al., 2013). Therefore if the BK channel is indeed playing a role 

in maintaining efficient sensory gating, as has been suggested by the results of this research 

project, then it may also be exerting effects on higher cognitive function through these 

mechanisms, in addition to already contributing to the etiology of a number of neurological 

disorders.  However, further research is required to understand to what extent the disruption of 

higher cognitive function is caused by sensory gating disruptions or rather by an independent 

pathology.  Thus, functional BK channels seem to be of great importance in basic and higher 

cognitive processes, and therefore seem to be a useful pharmaceutical target aimed at enhancing 

these processes. 
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